Introduction to Machine Learning

Yixin Lin, Serge Assaad, Rohith Kuditipudi

Duke University

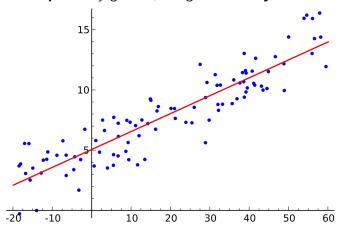
yixin.lin@duke.edu, serge.assaad@duke.edu, rohith.kuditipudi@duke.edu

March 25, 2017

Outline

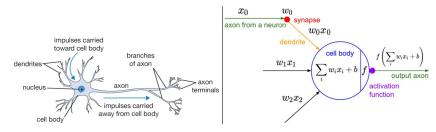
1 Overview of basic principles of machine learning

2 Introduction to neural networks

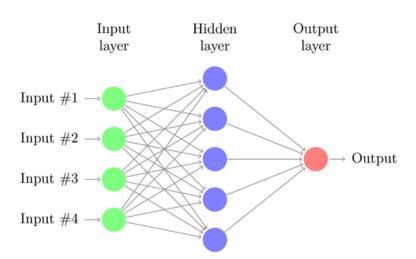

3 Tutorial on implementing deep learning algorithms

Overview of basic principles of machine learning

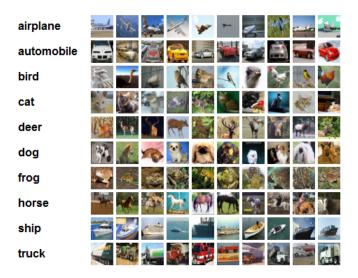
- Three components to any ML problem: the task, the performance measure and the data
- Essential definitions
 - Features
 - Model
 - Parameters
 - Loss
- Two (broad) kinds of tasks
 - Supervised learning: data is labeled/annotated
 - Unsupervised learning: data is unlabeled


Example: Linear Regression

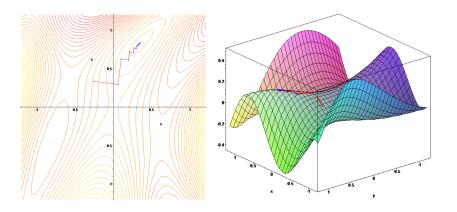
• Can we **predict** y given x, using the model $\hat{\mathbf{y}} = m\mathbf{x} + \mathbf{b}$?


Introduction to Neural Networks

- Neurons are the building blocks of neural networks
- Each neuron is a **function**: $y = f(\mathbf{w}^T \mathbf{x} + \mathbf{b})$



• Note: **neural networks** \neq **neuroscience!!!!!**


Neural Networks are Layers of Neurons

What are Neural Networks Good For?

Training Neural Networks: Gradient Descent

Tutorial

- Time to build something!
- Goals:
 - Give you a basic framework for thinking about what machine learning is and isn't
 - Have a project done or almost done at the end of the workshop
 - Get you set up to continue to tinker and play with machine learning models

Thanks!

Resources and references: yixinlin.net/intro-ml